End Game Enhancement Using Reflexive Decision Making

Presented To

3rd Annual Missiles and Rockets Symposium April 19, 2002

> Fred Lisy, Vice President, COO Troy Prince, Sr. Engineer

Cleveland, Ohio 44143-2140 Phone (440) 449-5785 Fax (440) 449-6524

Funding through — Munitions Directorate, Elgin AFB, SBIR Program

Outline

- Orbital Research Background
 - Company History
 - Programs
- Advanced Control Program Overviews
 - Ship automation
 - Swarm Intelligence for Air Vehicles
 - Biologically Inspired Collision Avoidance and Target Seeking Systems
- End Game Enhancement Using Reflexive Decision Making on Loitering Munition
 - Training of Neural Networks with Genetic Algorithms
 - Simulation Results
 - » Stationary Targets
 - » Moving Targets
- End Game Enhancement Flight Demonstration

Company Background

- Founded: February, 1991
- **Mission:** To find new and innovative technological solutions in advanced controls and microdevices for various military and commercial applications.
- **Focus:** To transition basic research and development technologies from the laboratory environment to hardware platforms.
- Location: 673G Alpha Drive, Cleveland, Ohio
- Employees: Twenty employees (sixteen full-time) and twelve consultants
- Core technologies:
 - Micro Devices and Sensors
 - Advanced Controls

Orbital Research is a Small Business but....

In business for 10 years

Inc.

 Top 500 – selected as one of the fastest growing companies in the US to be awarded 06/02

 "Weatherhead 100 - Outstanding Corporate Growth Award," Weatherhead School of Management 1999, 2000 and 2001

• "Inner City 100 Award" from Inc. Magazine's Initiative for a Competitive Inner City in 1999, 2000, and 2001

Micro Devices and Sensors

MEMS Microvalves

Flow Control Devices

Medical Devices

Missile and Airfoil Control

MEMS Microvalve

Array of 8 **Microvalves**

Refreshable Braille **Display System**

Physiological Electrode

Micro Pressure Transducers

In-Situ Pressure Transducers for Turbine Engines

- dynamic pressure measurement
- Stall detection
- Reduced emissions
- •Fuel efficiency
- Blade-tip passing
- Flame-out detection

Engine health monitoring

In-cylinder Pressure Transducers for Diesel Engines

- Linear output over wide range of strain
- High sensitivity
- Operates above engine temperature
- Robust design for combustion monitoring

Orbital Research Inc. =

Active Flow Control Overview

- AIRFOIL RESEARCH
- DELTA WING RESEARCH
- MISSILE RESEARCH

Experimental Fluid Dynamics (EFD)

Computational Fluid Dynamics (CFD)

Orbital Research Inc.

Control Solutions for Material and Weapons Handling on Navy Ships

Handling System Components

- Autonomous Mobile Cargo Handling Units
 - Swappable Battery Packs for Power
 - Essential Spatial Awareness and Navigation
 - Capable of Handling Up To Maximum Std.
 Container Weight ~5000 lbs.
- Depalleting Handlers
 - Modeled on COTS Pick&Place Robotics Systems
- Vertical Conveyor Systems
 - Replaced with Linear Motor Actuated Small Automatic Elevators
- Automated Storage Rooms
- Horizontal Conveyors
 - Based on Low-Profile 'Fold-Down' Linear Motor Systems
- Weapon Magazines

Group Coordination: UAVs / Loitering Munitions Control:

Swarm intelligence algorithms synergize cooperative behavior between UAVs; Agents work collaboratively for optimal mission performance

Group Coordination: Microsatellite Constellations

Features:

- Group behavior algorithms enable collaboration of swarms of microsatellites
- Rule based commands for tasking of individuals
- Fuzzy system identification for adaptive sensor fusion dictating rule based commands

Benefits:

- Decentralized and rapidly reconfigurable control principles
- Adaptability to changes in mission and mission resources (e.g. number of satellites)
- Ability to generate new robust rule bases for variable missions

Autonomous Munition Guidance

- Three recognized fundamental phases of munition flight:
 - Midcourse from launch until target acquired
 - Terminal when target acquired
 - Endgame last one second or less of flight
 - » Separate problem due to speed of correction
 - » Control inputs (thrust) may be unreliable
 - » Missile guidance failure most likely to occur during endgame
- Improvement in performance during endgame engagement is necessary
- Biology offers insights for potential improvements

Critical System Operating Assumptions

- Terminal guidance has piloted the air vehicle into a viable endgame position
- Linear air frame operating response for endgame bounds
- LADAR data on target position provided
- Constant forward thrust

End Game Enhancement using Neural Nets and Genetic Algorithms

Biologically Inspired Target Seeking Reflex for Autonomous Munitions

Program Goal:

 Provide rapid target seeking and in-flight mission replanning capabilities for autonomous munitions by developing a set of reflexes with similar capabilities as biological organisms

Benefits:

- Instantaneous target path generation and tracking
- Efficiency of trajectory generation not inhibited by vehicle complexity
- Capability to incorporate any number of optimization characteristics
- Ability to react to/consider several threats simultaneously
- Reflexive behavior is context dependent (updated based upon vehicle state)
- Passive system enables smooth autopilot interface

Need for Endgame Enhancement

- Autonomous air vehicles are dependent on automatic control
- Rapid planning needed during end game for precision guided munitions
- Necessary features of such a system include:
 - accurate autorouting capability
 - incorporation of vehicular and environmental constraints into path generation
 - perform path-planning functions within strict time constraints

Orbital Research Program

- Prove Genetic Algorithms can generate a set of inputs which fly the munition to a point where a projectile would strike near center of target
- Utilize Neural networks which hold great promise for use in endgame due to their capability to represent complex data in compact structures for fast throughput
- Lay groundwork for development of control architectures for autonomous air vehicles that <u>expand scope and utility for other air</u> <u>vehicles</u>

Orbital Research Inc. =

Motivation: Key Abilities Inspired from Nature

- Sensor Integration: animals integrate large amounts of sensory information from multiple sensor modalities - decisions must be made rapidly. Munitions need to process many sources of sensor data to come up with appropriate response from actuators.
- <u>Context Dependent Behavior:</u> animal's reactions are continuously updated based upon **internal** physiological state and **environment** leg extended vs. control surface position. Munitions need to increase their efficiency and adaptability.
- Multi Constraint Incorporation: animals are capable of optimization within a host of varying conditions (missing legs). Vehicular dynamics and constraints (such as varying flight envelopes) need to be addressed.
- <u>Evolved Pattern Response</u>: animals have thousands of generations of natural selection whose results are incorporated into their responses. Pre-developed reflexes need to be combined and tuned for robust instantaneous reactions to every situation encountered during end game

Motivation Summary:

Key Biological Abilities Inspired from Nature

- a) well-adapted to the environments in which they operate,
- b) exhibit an impressive efficiency and flexibility,
- c) are very robust to contingency and damage;

Enabling similar abilities to autonomous munitions would greatly enhance their utility and performance

Biologically-Inspired Control

Project Synopsis:

Objective and Approach:

<u>Technical</u> <u>Challenges:</u>

- 1)Extract salient features of animal behavior
- 2)Implement them as workable systems in mobile vehicles

Results to date:

- Insect-based distributed control for terrain locomotion
- Construction of 3 generations of cockroach-like robots
- BioAVERT neural circuit mapping the cockroach reflexive escape response developed for instantaneous vehicle escape
- BioSeek reflex developed for air vehicle targeting
- Emergent behavior algorithms constructed for multi-agent coordination
- Biology provides inspiration to solve engineering problems

Focus 1: Loitering Munitions with Air-to Ground Targeting Scenario

Goal-Seeking Scenario:

Generate control inputs piloting the munition to a point insuring target strike for unique air vehicle platform

Application of Biologically Inspired Reflexes

- Flexible Endgame Reflex to Control Air Vehicle in the Presence of Unexpected Disturbances to Ensure High Probability of Kill per Shot
 - Targeting reflex provides high degree of accuracy required for unitary warhead
 - Targeting reflex counters and adapts to unexpected environmental upsets such as updrafts and cross-winds that can significantly impact lightweight air vehicles
- Collision Avoidance Reflex to Prevent Unexpected Controlled Flight Into Terrain or Other Air Vehicles
 - Collision avoidance reflex will endow the air vehicle the ability to autonomously avoid unexpected collisions and continue its mission even in the presence of rugged terrain or urban environments

Focus 2: Endgame Enhancement of Vehicles Maneuvering Away from Collision BUT still Maintain Path to hit Target

BIOSEEK - Biologically Inspired Target Seeking Reflex for Autonomous Munitions/Neural Network

 Reacting to numerous obstacles while maneuvering within vehicles constraints (flight envelope)

Autonomous Munition Guidance

- Problem consists of:
 - Estimations of target motion
 - Generation of guidance commands
 - Control of munition
- Estimation filter processes target information obtained from seeker
- Guidance law produces command rates
- Autopilot converts input to thrust and control surface commands
- The resulting motion closes the feedback loops
- Focus on Guidance Law Development

FCS Block Diagram [Cloutier, 1989]

Review of: Neural Nets and Genetic Algorithms

Model of Cockroach Neural Network

Guidance Reflex for Autonomous Munitions

Target-Seeking Reflex Learning

- Sufficient data is needed to train the system
- A path-planning scheme is developed to create training trajectories
- Trajectories are used to train the neural network such that they may be reproduced instantly to track targets

MAPPER/Genetic Algorithm

Benefits/Features:

- Genetic (evolutionary) algorithm evolves searching pattern to find best path for autonomous vehicles
- Computational efficiency proven for 6 degrees of freedom in 3dimensional scenarios
- Proven to find "best" possible path quickly for complex vehicles with maneuvering limitations
- Generates inputs to fly air vehicle to a point where a projectile would strike near center of target
 - Flight constraints
 - Path destination
 - Final Orientation
- Feasible Path to Target found within 100 generations
- Optimized off line to improve hit near center of Target

IC: Initial AoA, sideslip, pitch, 2.5m rad. target 30m x, 0m y Evolutionary Evaluation: 500 Generations, Target acquired @100

IC: Initial AoA, sideslip, pitch, 2.5m rad. target 30m x, 5m y Evolutionary Evaluation: 3000 Generations, Target acquired @~2000 Output: 0.63 sec flight, target pt. 0.35m off center

IC: Initial AoA, sideslip, pitch, 2.5m rad. target 30m x, -5m y Evolutionary Evaluation: 3000 Generations, Target acquired @~80 Output: 0.47 sec flight, target pt. 0.09m off center

IC: Initial AoA, sideslip, pitch, 2.5m rad. target 30m x, 10m y Evolutionary Evaluation: 3000 Generations, Target acquired @~100 Output: 0.45 sec flight, target pt. 0.01m off center

Orbital Research Inc. =

Untrained Targeting Situations

- Genetic Algorithms generated a set of inputs which would fly the munition to a point where a projectile would strike near center of target
- •Neural networks represent complex Genetic Algorithm data in compact structures for fast throughput.
- Neural Networks will select best Genetic Algorithm or will combine solutions

Mobile Targets

- Common end game operational scenario for "Tail Chase"
- Acquired Target 30 m in front, 5 m left moving at 10m/s (35% AV Speed)

Mobile Targets (moving one direction)

- Common operational scenario for "Tail Chase" Target begins 30 m in front, 5 m left moving at 10m/s (35% AV Speed)
- Algorithm determines the ideal roll, pitch and yaw rates to hit target

Within Vehicle Constraints

Mobile Targets - Random movement (0.2 sec)

- Common "Tail Chase" Scenario
- Dynamic target starting 30m in front of the air vehicle, moving in different directions at 10m/s; reflex adapts in each case (over 10,000 scenarios tested)
- Reflex shows 83% Confidence Ratio for targets moving at 40% of AV speed

Evading Targets (Moving then Changes Direction)

- Target may make abrupt random changes in its path
- Target 35 m in front 5 m to right w/initial 10m/s forward. At 0.2 sec. turns 90°
- Strike distance 1.2 m
- 79% Confidence Ratio for targets turning randomly with speed up to 40% of AV

Reflex Performance with Sensor Data Interruption

- •Target may possess sensor jamming capabilities or circumstances may cause sensor "blind spots"
- Target located 35 m in front,5m to right of AV
- •Target "jumps" 10m forward, 8m laterally (@ 0.3 sec)
- •Targeting reflex instantly reorients munition and strikes target 0.4 m off center
- •67% Confidence Ratio for disruptions up to 15 m in front, +/- 7.5 m to left or right

Flight Test of Reflexes Evasion (Targeting) **Targeting** Level Flight **Yinitial** Evasion Reflex Targeting Alarm Radius (30m)

Hardware Platform

Seeking Example 1

Neural Network Seeking (Target Hit at t=Vertical Line: roll=13.09, pitch=-4.29, yaw=31.36)

Composite Image from video showing an air vehicle striking a target

Target Seeking Reflex Target at: (87.27, -7.00) meters

Neural Network Seeking
(Target Hit at t=Vertical Line: roll=-32.78, pitch=3.31, yaw=-118.93)
phi(roll) ——theta-sense(pitch) - - 0- - psi(yaw)

Time (sec)

160

190

x position (meters)

Seeking Example 3

Neural Network Seeking (Target Hit at t=Vertical Line: roll=-32.78, pitch=3.31, yaw=-118.93)

Time (sec)

12

•phi(roll) — theta-sense(pitch) - - • - psi(yaw)

110

Evasion Example 1

Neural Network Evasion

Obstacle Evasion Reflex

Evasion Example 2

Conclusions

- □Successfully demonstrated air-to-ground targeting using a neural network endgame targeting reflex
- □Reflex is capable of directing target strike for targets moving on rapidly changing, evading and unpredictable paths
- □ Reflex is capable of working through sensor disruptions
- □Demonstrated reflexive target seeking and avoidance algorithms can work on a model flight vehicle

Reflex Adaptability

- Minimal Autopilot System (decoupled open loop)
- 1/3 to 1/2 second delay in the rate loop.
- Unpredictable dynamics and orientations
- Unpredictable moments due to wind gusts